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Stationary Stochastic Asy~ietric Control

by

Howard Weiner

University of California, Davis

and

Stanford University

1. Introduction Let the process X(t), be defined by

dZ(t) - u(X(t))dt + dW(t)

where W(t) is a standard Wiener process and u is a control function,

and X(O) - z.

Let 9 be even, convex, symmetric positive, exponentially bounded

and strictly increasing on. the positive axis. Let the average expected

cost function be

J~z~) -Tlim T E [y (X(s)) + Ju (A~s))IJ* ds

with 0 >

The object is to find the control law u which iniizies J

subject to a < U < b where a < 0 < b are real nuimbers. A two-dimensional

version Is Indicated. The case a I 1Is considered in great detail in

(11. -Me results for the cases a I4 are given in this paper. The

complete proofs are as in (11 and reference is made to that paper for

the complete proofs of the results mentioned here. In fact, it will

1Hj; '
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2.

suffice to indicate the nature of the solutions to the "asymptotic

dynamic programing equation" in one-or multi-dimensions in [11, since

the other arguments are as given there, or sufficiently similar so as

to not be explicitly given. In one dimension it has the form

V +fh(f ) +,

and yields the unique optimal control by the methods of [1].

IzI Optimal Lw

Le a 1. Let am 2n, for n > I an integer. Let a < 0 < b

Let h(c) a min (uc + u)

a<u<b

Then 1 1
2n-1

-- 2u 2n 2n

h(c) =

0 if c- 0

t In (ac +a2a ,bc + b2n) otherwise (3)

Proof: The proof follows by an elementary computation, noting that

the nnimum is either at an interior (differentiable) point or at a

boundary of u

_ma. If a 2n, for som integer n> l, for a <O<b, if

h(c) =in (uc + I u1  ,
a<u<b

Mama
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then 1

-I o -f -

a \ .cd u<b

h(c) -

min(%O ac+ I bc + 1b61) otherwise (4)

Proof The minimum is either at an interior differentiable point or

at one of the three points 0, a, b.

Theorem I Assume a < 0 < b.

G If d-2n, a>

Then there are distinct numbers x1 <x 2  such that for

xc _. <x 2 , the "asymptotic dynamic programing equation [11, is

* 1"

For x > x2

2
-x._ ' .+af' +a2  + cp. (5)

The xI, x2 , ) are found by continuity at the boundaries and by

setting f'(x 2 ) - f'(0) or f"(x,) - f'(-=)

G if a 2n, a 1
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Then there are distinct numbers y,, I < Z < 3

Yl < 0 < Y2 < Y3  such that the "asymptotic dynamic

programming equations [1]" satisfy, if

x < yl

+bf' + IbI +cp

and if yl < x < 0,

then
f.

X +af'+ jai +cp

and if O<x<y 2

then I
a-l

and if Y2 <x

then

% + af '+Ija I +(

where the values y,, y2, y3, X are obtained by setting the

solutions equal (by continuity) at y V Y2 ' y3 and f(y3) f f(-) or

f(y) - -

Proof The expressions (5), (6) follow from (1), (2) using

monotonicity and symmetry of cp, the properties of c u + lul

as a function of c, u, the consequent symmetry of f', and the

uniqueness arguments in [1].

Theorem 2

O If a - 2n, if a <0< b
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the optimal law is

2n-I

2n ~ x l<X < x2
u(X) -

b X <X I

a X > x2  (7)

Q If 0 < cacia 2n, then for a < 0 <b,
01

b if X < Y,

a if y <X< 0 or Y2 < X (8)

Proof This follows Lmediately from Theorem 2 and the lemmas, (3) - (6).

Details are as in [11 for uniqueness and optimality of u.

3. Multi-dimensional case-Remarks

Let I be a k x 1 stochastic process with

d Xt- uj) dt + dHUt (9)

where u is d x 1 and V is d x 1 Wiener process with independent

components and X (0) x

Lt

3(x,.) - MOM j 1 P (w(s)) + L(X(S))!i ]s (10)

VMee (P If even, convex, positive and exponentially bounded in

eab Awum at, and

- .'%*
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where HullP 'u( 1 for some p>0

It is desired to minimize J subject to

weea'9 b91 I < A < d are real numbers. This

constraint will be written a < u < b

Let ci (clI,...c d,) and

denote

h(s) m uin ('+ 1~l).(

The evaluation of h(c) requires the evaluation of c-u + U,~I

at the 2 d+l1points given by u -a o
£ 9 & <orA << d and atthe

1L minimizing S-1 + Lul , for fixed c. As c varies, Rd is cut

into regions defined by the minimum h(c) and the u achieving that

mini==.

such that

f U()aacIa exists and is continuous I < i, d <

Letf X NW

For the various regions above, it is required to solve (for

2 ij I~~ +hf~ ... fd() + t;j .(2
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7.

Equating solutions at the boundary of these regions defines a

finite number of vectors x1 = (xll ...xld) x2 ... ,x where

n= 2 d + 1 such that f.(x ) = f(= ) where - denotes any ray in
j r r

a boundary region such that at least one coordinate may be set equal

to + m and the point so obtained remain in the region. This determines

X also.

It follows as before that if m0 - optimal u , then

u 0 (X) - that u giving h(fl...,f d

in any of the regions given by the vectors as edges.

Reark 2 If in addition 1jull < M < -, and if - = optimalI p ~ op tia
with this additional constraint, then with

if 11! 11 < M

UOp 0p
U1 UR op

which follows by a variational inequality. See [2] for a similar

argument.
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